Publications

We publish our research papers at a wide spectrum of venues. In addition, we aim at releasing our research results in the form of open source software projects and datasets.

Filter by Type

Filter by Year

Sort by Date

  September 2020  Proceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization Conference

Hardware-Accelerated Real-Time Stream Data Processing on Android with GNU Radio

Bastian Bloessl, Lars Baumgärtner, Matthias Hollick

PDF BibTeX DOI: 10.1145/3411276.3412184

Abstract
With the ever-increasing performance of smartphones and tablets, they become viable platforms for applications that were, in the past, only possible on desktops or laptops. In this paper, we study their applicability for real-time stream-data processing, which is particularly interesting for Software Defined Radio (SDR) applications, enabling wireless measurement and experimentation campaigns on mobile platforms. To this end, we port GNU Radio, a state-of-theart, open source, real-time stream-data processing framework, to Android and evaluate its performance. We show that it is possible to fully benefit from available accelerators, i.e., Single Instruction Multiple Data (SIMD) and the Graphics Processing Unit (GPU), which provide considerable speedups and allow for efficient implementations. As a general-purpose real-time data processing framework, GNU Radio can provide the base for a wide range of applications. To demonstrate its flexibility, we provide example applications that implement FM and Wireless LAN (WLAN). Our toolchain is published as open source software, thus serving as an enabler for highly mobile SDR applications.

  July 2020  WiSec 2020: 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks Conference

Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication

Florentin Putz, Flor Álvarez, Jiska Classen

PDF BibTeX DOI: 10.1145/3395351.3399420

Abstract
Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate devices. This requires a common hardware interface, which limits the use of existing SDP systems. We propose to use short-range acoustic communication for the initial pairing. Audio hardware is commonly available on existing off-the-shelf devices and can be accessed from user space without requiring firmware or hardware modifications. We improve upon previous approaches by designing Acoustic Integrity Codes (AICs): a modulation scheme that provides message authentication on the acoustic physical layer. We analyze their security and demonstrate that we can defend against signal cancellation attacks by designing signals with low autocorrelation. Our system can detect overshadowing attacks using a ternary decision function with a threshold. In our evaluation of this SDP scheme’s security and robustness, we achieve a bit error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on Android smartphones, we demonstrate pairing between different smartphone models.

  June 2020  International Journal of Disaster Risk Reduction (IJDRR) Article

Emergency Service Staff and Social Media – A Comparative Empirical Study of the Perception by Emergency Services Members in Europe in 2014 and 2017

Christian Reuter, Marc-André Kaufhold, Fabian Spahr, Thomas Spielhofer, Anna Sophie Hahne

PDF BibTeX DOI: 10.1016/j.ijdrr.2020.101516

Abstract
Finding a way to ensure an effective use of social media has become increasingly important to emergency services over the past decade. Despite all efforts to determine the utility of social media for emergency organisations, it is necessary to benefit from such institutions' staffs' opinions to establish effective use. To provide empirical evidence we present a comparison of two surveys, conducted across Europe with emergency services in 2014 and 2017 respectively, with a total of 1169 answers. The analysis shows that personal experience has an effect on how organisational usage of social media is perceived and how emergency service staff view the future use of social media. Furthermore, the use has increased. This article not only shows emergency services what their staff think about their social media usage but also discusses challenges and future directions for the design of systems that can be useful for further development of optimized organisational social media usage.

  April 2020  International Journal of Disaster Risk Reduction (IJDRR) Article

Empirical Insights for Designing Information and Communication Technology for International Disaster Response

Milan Stute, Max Maass, Tom Schons, Marc-André Kaufhold, Christian Reuter, Matthias Hollick

PDF BibTeX DOI: 10.1016/j.ijdrr.2020.101598

Abstract
Due to the increase in natural disasters in the past years, Disaster Response Organizations (DROs) are faced with the challenge of coping with more and larger operations. Currently appointed Information and Communications Technology (ICT) used for coordination and communication is sometimes outdated and does not scale, while novel technologies have the potential to greatly improve disaster response efficiency. To allow adoption of these novel technologies, ICT system designers have to take into account the particular needs of DROs and characteristics of International Disaster Response (IDR). This work attempts to bring the humanitarian and ICT communities closer together. In this work, we analyze IDR-related documents and conduct expert interviews. Using open coding, we extract empirical insights and translate the peculiarities of DRO coordination and operation into tangible ICT design requirements. This information is based on interviews with active IDR staff as well as DRO guidelines and reports. Ultimately, the goal of this paper is to serve as a reference for future ICT research endeavors to support and increase the efficiency of IDR operations.

  April 2020  Proceedings of the International Conference on Wirtschaftsinformatik (WI) Conference

Sticking with Landlines? Citizens’ Use and Perception of Social Media in Emergencies and Expectations Towards Emergency Services in Germany

Jasmin Haunschild, Marc-André Kaufhold, Christian Reuter

PDF BibTeX DOI: 10.30844/wi_2020_o2-haunschild

Abstract
Crisis informatics has examined the use, potentials and weaknesses of social media in emergencies across different events (e.g., man-made, natural or hybrid), countries and heterogeneous participants (e.g., citizens or emergency services) for almost two decades. While most research analyzes specific cases, few studies have focused on citizens’ perceptions of different social media platforms in emergencies using a representative sample. Basing our questionnaire on a workshop with police officers, we present the results of a representative study on citizens’ perception of social media in emergencies that we conducted in Germany. Our study suggests that when it comes to emergencies, socio-demographic differences are largely insignificant and no clear preferences for emergency services’ social media strategies exist. Due to the widespread searching behavior on some platforms, emergency services can reach a wide audience by turning to certain channels but should account for groups with distinct preferences.

  February 2020  The Art, Science, and Engineering of Programming Article

Implementing a Language for Distributed Systems: Choices and Experiences with Type Level and Macro Programming in Scala

Pascal Weisenburger, Guido Salvaneschi

PDF BibTeX DOI: 10.22152/programming-journal.org/2020/4/17

Abstract
Multitier programming languages reduce the complexity of developing distributed systems by developing the distributed system in a single coherent code base. The compiler or the runtime separate the code for the components of the distributed system, enabling abstraction over low level implementation details such as data representation, serialization and network protocols. Our ScalaLoci language allows developers to declare the different components and their architectural relation at the type level, allowing static reasoning about about distribution and remote communication and guaranteeing static type safety across components. The compiler splits the multitier program into the component-specific code and automatically generates the communication boilerplate. Communication between components can be modeled by declaratively specifying data flows between components using reactive programming. In this paper, we report on the implementation of our design and our experience with embedding our language features into Scala as a host language. We show how a combination of Scala’s advanced type level programming and its macro system can be used to enrich the language with new abstractions. We comment on the challenges we encountered and the solutions we developed for our current implementation and outline suggestions for an improved macro system to support the such use cases of embedding of domain-specific abstractions.

  February 2020  Embedded Wireless Systems and Networks (EWSN) Conference

Improving the Reliability of Bluetooth Low Energy Connections

Michael Spörk, Jiska Classen, Carlo Alberto Boano, Matthias Hollick, Kay Römer

PDF BibTeX

Abstract
o sustain a reliable data exchange, applications based on Bluetooth Low Energy (BLE) need to effectively blacklist channels and adapt the physical mode of an active connection at runtime. Although the BLE specification foresees the use of these two mechanisms, their implementation is left up to the radio vendors and has not been studied in detail yet. This paper fills this gap: we first investigate experimentally how to assess the quality of a BLE connection at runtime using information gathered from the radio. We then show how this information can be used to promptly blacklist poor channels and select a physical mode that sustains a high link-layer reliability while minimizing power consumption. We implement both mechanisms on two popular platforms and show experimentally that they allow to significantly improve the reliability of BLE connections, with a reduction in packet loss by up to 22 % compared to existing solutions.

  February 2020  Technische Universität Darmstadt Thesis

Availability by Design: Practical Denial-of-Service-Resilient Distributed Wireless Networks

Milan Stute

PDF BibTeX DOI: 10.25534/tuprints-00011457

Abstract
Distributed wireless networks (DWNs) where devices communicate directly without relying on Internet infrastructure are on the rise, driving new applications and paradigms such as multimedia, authentication, payment, Internet of things (IoT), vehicular communication, and emergency response. However, the increased societal reliance on technology and the resulting “always-on” expectations of the users increase the risk of denial-of-service (DoS) attacks as they can leverage disruption in new ways beyond extortions (ransomware) that are common in today’s Internet ecosystem. These new risks extend to our physical world, directly impacting our daily lives, e.g., by being locked out of a smart home or by disrupting vehicular collision avoidance systems. As a research community, we need to protect those new applications that—as we find—can be mapped to a total of three distinct networking scopes: neighbor, island, and archipelago. In this thesis, we advance the field in each of these scopes. First, we analyze two proprietary neighbor communication protocols, Apple Wireless Direct Link (AWDL) and Apple AirDrop, that are deployed on more than 1.4 billion devices worldwide. During the process, we uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a machine-in-the-middle (MitM) attack on AirDrop, a DoS attack on AWDL preventing communication, and DoS attacks enabling crashing of neighboring devices. In addition, we found privacy leaks that enable user identification and long-term tracking. All attacks can be mounted using low-cost off-the-shelf hardware. In total, we disclose eight distinct vulnerabilities that we mitigate in collaboration with Apple. Second, we design and implement a new island communication protocol tailored to IoT scenarios, which provides provable protections against previously neglected risks such as wormhole- and replay-supported greyhole attacks. We support our analytical findings with testbed experiments. Third, we propose an archipelago-scope communication framework for emergencies that achieves resiliency against flooding and Sybil attacks. We evaluate our design using an original expert knowledge-based simulation that models human mobility during the aftermath of the 2013 Typhoon Haiyan in the Philippines. Finally, and to nourish future research, we provide a guide for analyzing Apple’s wireless ecosystem and publish several software artifacts, including an AWDL Wireshark dissector, open AWDL and AirDrop implementations, a prototype of our IoT communication protocol, and our natural disaster mobility model.

  2020  2020 CHI Conference on Human Factors in Computing Systems (CHI '20) Conference

Podoportation: Foot-Based Locomotion in Virtual Reality

Julius von Willich, Martin Schmitz, Florian Müller, Daniel Schmitt, Max Mühlhäuser

BibTeX DOI: http://dx.doi.org/10.1145/3313831.3376626

Abstract
Virtual Reality (VR) allows for infinitely large environments. However, the physical traversable space is always limited by real-world boundaries. This discrepancy between physical and virtual dimensions renders traditional locomotion methods used in real world unfeasible. To alleviate these limitations, research proposed various artificial locomotion concepts such as teleportation, treadmills, and redirected walking. However, these concepts occupy the user's hands, require complex hardware or large physical spaces. In this paper, we contribute nine VR locomotion concepts for foot-based and hands-free locomotion, relying on the 3D position of the user's feet and the pressure applied to the sole as input modalities. We evaluate our concepts and compare them to state-of-the-art point & teleport technique in a controlled experiment with 20 participants. The results confirm the viability of our approaches for hands-free and engaging locomotion. Further, based on the findings, we contribute a wireless hardware prototype implementation.

  2020  IEEE Transactions on Mobile Computing Article

Performance and Pitfalls of 60 GHz WLANs Based on Consumer-Grade Hardware

Swentank Kumar Saha, Hany Assasa, Adrian Loch, Naveen Muralidhar Prakash, Roshan Shyamsunder, Shivang Aggarwal, Daniel Steinmetzer, Dimitrios Koutsonikolas, Joerg Widmer, Matthias Hollick

PDF BibTeX DOI: 10.1109/TMC.2020.2967386

Abstract
Wireless networks operating in the 60 GHz band have the potential to provide very high throughput but face a number of challenges (e.g., high attenuation, beam training, and coping with mobility) which are widely accepted but often not well understood in practice. Understanding these challenges, and especially their actual impact on consumer-grade hardware is fundamental to fully exploit the high physical layer rates in the 60 GHz band. To this end, we perform an extensive measurement campaign using two commercial off-the-shelf 60 GHz routers in real-world environments. Our results allow us to revisit a range of issues and provide much deeper insights into the reasons for specific performance compared to prior work on performance characterization. Further, our study goes beyond basic link characterization and explores for the first time practical considerations such as coverage and access point deployment. While some of our observations are expected, we also obtain highly surprising insights that challenge the prevailing wisdom in the community. We derive the shortcomings of current commercial 60 GHz devices, and the fundamental problems that remain open on the way to fast and efficient 60 GHz networking.

  2020  CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems Conference

Walk The Line: Leveraging Lateral Shifts of the Walking Path as an Input Modality for Head-Mounted Displays

Florian Müller, Martin Schmitz, Daniel Schmitt, Sebastian Günther, Markus Funk, Max Mühlhäuser

BibTeX DOI: 10.1145/3313831.3376852

Abstract
Recent technological advances have made head-mounted displays (HMDs) smaller and untethered, fostering the vision of ubiquitous interaction in a digitally augmented physical world. Consequently, a major part of the interaction with such devices will happen on the go, calling for interaction techniques that allow users to interact while walking. In this paper, we explore lateral shifts of the walking path as a hands-free input modality. The available input options are visualized as lanes on the ground parallel to the user's walking path. Users can select options by shifting the walking path sideways to the respective lane. We contribute the results of a controlled experiment with 18 participants, confirming the viability of our approach for fast, accurate, and joyful interactions. Further, based on the findings of the controlled experiment, we present three example applications.

  2020  Proceedings of the European Conference on Information Systems (ECIS 2020) Conference

Warning the Public: A Survey on Attitudes, Expectations and Use of Mobile Crisis Apps in Germany

Marc-André Kaufhold, Jasmin Haunschild, Christian Reuter

PDF BibTeX

Abstract
As part of information systems, the research field of crisis informatics increasingly investigates the potentials and limitations of mobile crisis apps, which constitute a relatively new public service for citizens and are specifically designed for the dissemination of disaster‐related information and communication between authorities, organizations and citizens. While existing crisis apps, such as KATWARN or NINA in Germany, focus on preparatory information and warning functionality, there is a need for apps and research on police-related functionality, such as information on cybercrime, fraud offences, or search for missing persons. Based on a workshop with civil protection (N=12) and police officers (N=15), we designed a questionnaire and conducted a representative survey of German citizens (N=1.219) on the past, current and future use, perceived helpfulness, deployment and behavioural preferences, configurability and most important functionality of mobile crisis apps. Our results indicate that in addition to emergency and weather warnings, crime- and health-related warnings are also desired by many, as is the possibility for bidirectional communication. People also want one central app and are resistant to installing more than one crisis app. Furthermore, there are few significant differences between socioeconomic groups.

  January 2020  Information Processing & Management Article

Rapid relevance classification of social media posts in disasters and emergencies: A system and evaluation featuring active, incremental and online learning

Marc-André Kaufhold, Markus Bayer, Christian Reuter

BibTeX DOI: 10.1016/j.ipm.2019.102132

Abstract
The research field of crisis informatics examines, amongst others, the potentials and barriers of social media use during disasters and emergencies. Social media allow emergency services to receive valuable information (e.g., eyewitness reports, pictures, or videos) from social media. However, the vast amount of data generated during large-scale incidents can lead to issue of information overload. Research indicates that supervised machine learning techniques are sui- table for identifying relevant messages and filter out irrelevant messages, thus mitigating in- formation overload. Still, they require a considerable amount of labeled data, clear criteria for relevance classification, a usable interface to facilitate the labeling process and a mechanism to rapidly deploy retrained classifiers. To overcome these issues, we present (1) a system for social media monitoring, analysis and relevance classification, (2) abstract and precise criteria for re- levance classification in social media during disasters and emergencies, (3) the evaluation of a well-performing Random Forest algorithm for relevance classification incorporating metadata from social media into a batch learning approach (e.g., 91.28%/89.19% accuracy, 98.3%/89.6% precision and 80.4%/87.5% recall with a fast training time with feature subset selection on the European floods/BASF SE incident datasets), as well as (4) an approach and preliminary eva- luation for relevance classification including active, incremental and online learning to reduce the amount of required labeled data and to correct misclassifications of the algorithm by feed- back classification. Using the latter approach, we achieved a well-performing classifier based on the European floods dataset by only requiring a quarter of labeled data compared to the tradi- tional batch learning approach. Despite a lesser effect on the BASF SE incident dataset, still a substantial improvement could be determined.

  November 2019  ASE2019 Conference

Automated Refactoring to Reactive Programming

Mirco Köhler, Guido Salvaneschi

PDF BibTeX DOI: 10.1109/ASE.2019.00082

Abstract
Reactive programming languages and libraries, such as ReactiveX, have been shown to significantly improve software design and have seen important industrial adoption over the last years. Asynchronous applications – which are notoriously error-prone to implement and to maintain – greatly benefit from reactive programming because they can be defined in a declarative style, which improves code clarity and extensibility. In this paper, we tackle the problem of refactoring existing code bases that are designed using traditional abstractions for asynchronous programming. We propose 2Rx, a refactoring tool to automatically convert asynchronous code to reactive programming. Our evaluation on top-starred GitHub projects shows that 2Rx is effective with the most common asynchronous constructs, covering ~94.7% of the projects with asynchronous computations, and it can provide a refactoring for ~91.7% of their occurrences.

  October 2019  44th IEEE Conference on Local Computer Networks (LCN) Conference

Multi-Strategy Simulation of Aerial Post-Disaster Ad Hoc Communication Support Systems

Julian Zobel, Patrick Lieser, Ralf Steinmetz

PDF BibTeX

Abstract
In case of destroyed or impaired infrastructure due to natural catastrophes, mobile devices such as smartphones can be used to create civilian ad hoc networks to provide basic means of communication. Due to the human behavior to form groups and cluster around significant locations in such situations, however, the network is often heavily intermittent, and thus, communication between clusters is impossible. Aerial Post-Disaster Ad Hoc Communication Support Systems can overcome the gaps between clusters, but the performance is highly dependent on factors like the applied strategy, the amount of UAVs, or their technical specifications. In this demonstration, we present different support strategies in an urban post-disaster scenario. Attendees can interact and select strategies and explore different strategy parameter settings, while observing the effect on the network performance and, additionally, gaining a comprehensive insight into the strategy behavior. The interaction with the demonstration underlines the vast amount of different settings and influence factors, an aerial system operator must take into account when selecting and adapting a strategy suitable for the current situation, as motivated in our accompanying main conference pape ZLD+19.

  October 2019  18th International Conference on Ad Hoc Networks and Wireless (ADHOC-NOW 2019) Conference

DTN7: An Open-Source Disruption-tolerant Networking Implementation of Bundle Protocol 7

Alvar Penning, Lars Baumgärtner, Jonas Höchst, Artur Sterz, Mira Mezini, Bernd Freisleben

PDF BibTeX

Abstract
In disruption-tolerant networking (DTN), data is transmitted in a store-carry-forward fashion from network node to network node. In this paper, we present an open source DTN implementation, called DTN7, of the recently released Bundle Protocol Version 7 (draft version 13). DTN7 is written in Go and provides features like memory safety and concurrent execution. With its modular design and interchangeable components, DTN7 facilitates DTN research and application development. Furthermore, we present results of a comparative experimental evaluation of DTN7 and other DTN systems including Serval, IBR-DTN, and Forban. Our results indicate that DTN7 is a flexible and efficient open-source multi-platform implementation of the most recent Bundle Protocol Version 7.

  October 2019  13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH ’19) Conference

Free Your CSI: A Channel State Information Extraction Platform For Modern Wi-Fi Chipsets

Francesco Gringoli, Matthias Schulz, Jakob Link, Matthias Hollick

PDF BibTeX DOI: 10.1145/3349623.3355477

Abstract
Modern wireless transmission systems heavily benefit from knowing the channel response. The evaluation of Channel State Information (CSI) during the reception of a frame preamble is fundamental to properly equalizing the rest of the transmission at the receiver side. Reporting this state information back to the transmitter facilitates mechanisms such as beamforming and MIMO, thus boosting the network performance. While these features are an integral part of standards such as 802.11ac, accessing CSI data on commercial devices is either not possible, limited to outdated chipsets or very inflexible. This hinders the research and development of innovative CSI-dependent techniques including localization, object tracking, and interference evaluation. To help researchers and practitioners, we introduce the nexmon CSI Extractor Tool. It allows per-frame CSI extraction for up to four spatial streams using up to four receive chains on modern Broadcom and Cypress Wi-Fi chips with up to 80MHz bandwidth in both the 2.4 and 5GHz bands. The tool supports devices ranging from the low-cost Raspberry Pi platform, over mobile platforms such as Nexus smartphones to state-of-the-art Wi-Fi APs. We release all tools and Wi-Fi firmware patches as extensible open source project. It includes our user-friendly smartphone application to demonstrate the CSI extraction capabilities in form of a waterfall diagram.

  July 2019  World Congress on Resilience, Reliability and Asset Management (WCRRAM 2019) Conference

The Emergency Responsive Digital City

Matthias Hollick, Anne Hofmeister, Jens Ivo Engels, Bernd Freisleben, Gerrit Hornung, Anja Klein, Michèle Knodt, Patrick Lieser, Imke Lorenz, Max Mühlhäuser, Peter Pelz, Annette Rudolph-Cleff, Ralf Steinmetz, Florian Steinke, Oskar von Stryk

PDF BibTeX

Software and Tools

dtn7-rs

Rust implementation of a daemon for DTN7 Bundle Protocol draft.

Source Code Buschfunk Project

OpenDrop

OpenDrop is a command-line tool written in Python that allows sharing files between devices directly over Wi-Fi. Its unique feature is that it is protocol-compatible with Apple AirDrop which allows to share files with Apple devices running iOS and macOS.

Source Code Python Package Project Website

OWL

Open Wireless Link (OWL) is an open implementation of the Apple Wireless Direct Link (AWDL) ad hoc protocol for Linux and macOS written in C.

Source Code Project Website